Theoretical study on reaction mechanism of ground-state cyano radical with 1,3-butadiene: prospect of pyridine formation.
نویسندگان
چکیده
The reaction of ground-state cyano radicals, CN(X(2)Σ(+)), with the simplest polyene, 1,3-butadiene (C4H6(X(1)Ag)), is investigated to explore probable routes and feasibility to form pyridine at ultralow temperatures. The isomerization and dissociation channels for each of the seven initial collision complexes are characterized by utilizing the unrestricted B3LYP/cc-pVTZ and the CCSD(T)/cc-pVTZ calculations. With facilitation of RRKM rate constants, through ab initio paths composed of 7 collision complexes, 331 intermediates, 62 hydrogen atom, 71 hydrogen molecule, and 3 hydrogen cyanide dissociated products, the most probable paths at collision energies up to 10 kcal/mol, and thus the reaction mechanism, are determined. Subsequently, the corresponding rate equations are solved that the concentration evolutions of collision complexes, intermediates, and products versus time are obtained. As a result, the final products and yields are determined. The low-energy routes for the formation of most thermodynamically stable product, pyridine, are identified. This study, however, predicts that seven collision complexes would produce predominately 1-cyano-1,3-butadiene, CH2CHCHCHCN (p2) plus atomic hydrogen via the collision complex c1(CH2CHCHCH2CN) and intermediate i2(CH2CHCH2CHCN), with a very minor amount of pyridine. Our scheme also effectively excludes the presence of 2-cyano-1,3-butadiene, which has energy near-degenerate to 1-cyano-1,3-butadiene, as supported by experimental findings.
منابع مشابه
A crossed molecular beam and ab initio study on the formation of 5- and 6-methyl-1,4-dihydronaphthalene (C11H12) via the reaction of meta-tolyl (C7H7) with 1,3-butadiene (C4H6).
The crossed molecular beam reactions of the meta-tolyl radical with 1,3-butadiene and D6-1,3-butadiene were conducted at collision energies of 48.5 kJ mol(-1) and 51.7 kJ mol(-1). The reaction dynamics propose a complex-forming reaction mechanism via addition of the meta-tolyl radical with its radical center either to the C1 or C2 carbon atom of the 1,3-butadiene reactant forming two distinct i...
متن کاملReaction dynamics of the 4-methylphenyl radical (p-tolyl) with 1,2-butadiene (1-methylallene): are methyl groups purely spectators?
The reactions of the 4-tolyl radical (C6H4CH3) and of the D7-4-tolyl radical (C6D4CD3) with 1,2-butadiene (C4H6) have been probed in crossed molecular beams under single collision conditions at a collision energy of about 54 kJ mol(-1) and studied theoretically using ab initio G3(MP2,CC)//B3LYP/6-311G** and statistical RRKM calculations. The results show that the reaction proceeds via indirect ...
متن کاملTheoretical Study on the Kinetics of the Reaction of C2H with C2H2
In this theoretical research, the mechanism of the C2H + C2H2 reaction is studied by high-level quantum-chemical methods and kinetics of the reaction is investigated by statistical rate theories. High-level electronic structure calculation methods including M06-2X, CCSD(T), CBS-Q and G4 methods are employed to explore the doublet potential energy surface of the reaction and compute the molecula...
متن کاملCombined crossed molecular beam and ab initio investigation of the reaction of boron monoxide (BO; X(2)Σ(+)) with 1,3-butadiene (CH2CHCHCH2; X(1)Ag) and its deuterated counterparts.
The reactions of the boron monoxide ((11)BO; X(2)Σ(+)) radical with 1,3-butadiene (CH2CHCHCH2; X(1)Ag) and its partially deuterated counterparts, 1,3-butadiene-d2 (CH2CDCDCH2; X(1)Ag) and 1,3-butadiene-d4 (CD2CHCHCD2; X(1)Ag), were investigated under single collision conditions exploiting a crossed molecular beams machine. The experimental data were combined with the state-of-the-art ab initio ...
متن کاملA crossed beams and ab initio investigation on the formation of cyanodiacetylene in the reaction of cyano radicals with diacetylene.
The crossed molecular beams reaction of ground state cyano radicals (CN) with diacetylene (HCCCCH) was studied in the laboratory under single collision conditions. Combining the derived center-of-mass translational energy and angular distributions with novel electronic structure calculations, we show that the linear cyanodiacetylene molecule (HCCCCCN) is the sole reaction product. Our study pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. A
دوره 118 36 شماره
صفحات -
تاریخ انتشار 2014